(Absolute Extrema): refers to the maximum and minimum values of a function in a specified interval.

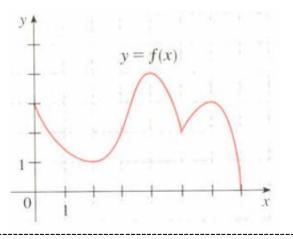
Extreme Value Theorem: (Max-Min Existence)

If f is continuous on a closed interval [a,b], then f attains both a maximum and minimum value there.

Procedure:

- 1. Find the derivative of the function.
- 2. Find the critical numbers.
 - -Recall this refers to any value of x, where f'(x) = 0 OR f'(x) = DNE
- 3. Create a table of values by plugging the *x*-numbers found in step 2, and the endpoints of the interval, back into the original function.

Note: Do not put any critical numbers into the table that are **not** included in the stated interval.

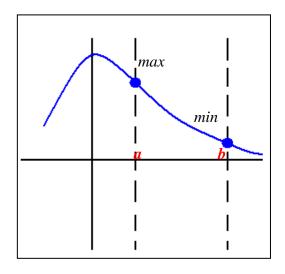

4. Identify the absolute maximum and minimum of the stated interval by comparing their *y*-values.

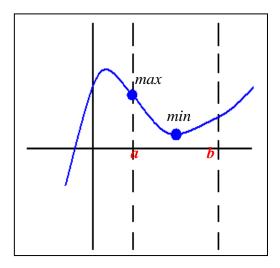
The maximium or minimum value can exist at the endpoints

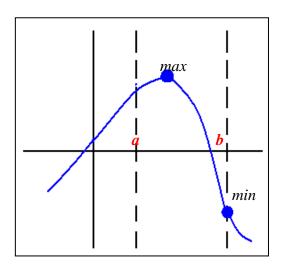
ONLY IF the stated interval is closed [,].

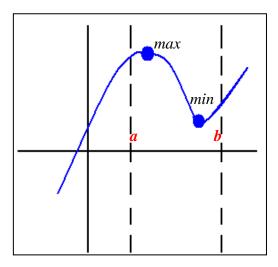
Examples:

- 1. Use the graph of f(x) to state the following:
 - a) absolute maximum and absolute minimum value
 - b) local maximum and minimum value(s).




- 2. a) Find the maximum/minimum values of the function $f(x) = x^3 3x^2 9x + 4$ in the interval [-4, 2].
 - b) Consider the open interval (-4,2). Would your results change?
- 3. a) Find the maximum/minimum values of the function $f(x) = x^2 + \frac{2}{x}$ in the interval [-1, 2].
 - b) Consider the closed interval [.5,2]. Would your results change?


Name: _____


Maximum and Minimum Values of a Function in an Interval

The interval is from a to b [a, b]

Name: _____

Unit 3 Worksheet 10 AP Calculus AB

Determine the absolute maximum and absolute minimum value over the stated interval by applying the Extreme Value Theorem.

1.
$$f(x) = x^2 + 4x + 4$$
 $[-4,0]$

2.
$$f(x) = x^2 + 3x$$
 [-2,1]

3.
$$f(x) = x^3 - 3x + 1$$
 $\left(-\frac{3}{2}, 3\right)$

4.
$$f(x) = x^3 - 3x^2$$
 [-1,3]

5.
$$f(x) = x^3 - 12x$$
 (0,4)

6.
$$f(x) = \frac{x}{x-2}$$
 [3,5]

7.
$$f(x) = \frac{1}{x}$$
 [-1,3]

8.
$$f(x) = \frac{1}{1+x^2}$$
 (-3,3)

9.
$$f(x) = \sqrt[3]{x}$$
 [-1,27]

10.
$$f(x) = \sqrt{9 - x^2}$$
 [-1,2]

Textbook Practice [4.2] pg. 279-280 #'s (3,4,6-10)